Scaling Netflix’s API via GraphQL Federation (#2)


In our previous post and QConPlus talk, we discussed GraphQL Federation as a solution for distributing our GraphQL schema and implementation. In this post, we shift our attention to what is needed to run a federated GraphQL platform successfully — from our journey implementing it to lessons learned.

Over the past year, we’ve implemented the core infrastructure pieces necessary for a federated GraphQL architecture as described in our previous post:

Studio Edge Architecture

The first Domain Graph Service (DGS) on the platform was the former GraphQL monolith that we discussed in our first post (Studio API). Next, we worked with a few other application teams to make DGSs that would expose their APIs alongside the former monolith. We had our first Studio applications consuming the federated graph, without any performance degradation, by the end of the 2019. Once we knew that the architecture was feasible, we focused on readying it for broader usage. Our goal was to open up the Studio Edge platform for self-service in April 2020.

April 2020 was a turbulent time with the pandemic and overnight transition to working remotely. Nevertheless, teams started to jump into the graph in droves. Soon we had hundreds of engineers contributing directly to the API on a daily basis. And what about that Studio API monolith that used to be a bottleneck? We migrated the fields exposed by Studio API to individually owned DGSs without breaking the API for consumers. The original monolith is slated to be completely deprecated by the end of 2020.

This journey hasn’t been without its challenges. The biggest challenge was aligning on this strategy across the organization. Initially, there was a lot of skepticism and dissent; the concept was fairly new and would require high alignment across the organization to be successful. Our team spent a lot of time addressing dissenting points and making adjustments to the architecture based on feedback from developers. Through our prototype development and proactive partnership with some key critical voices, we were able to instill confidence and close crucial gaps.

Once we achieved broad alignment on the idea, we needed to ensure that adoption was seamless. This required building robust core infrastructure, ensuring a great developer experience, and solving for key cross-cutting concerns.

Our GraphQL Gateway is based on Apollo’s reference implementation and is written in Kotlin. This gives us access to Netflix’s Java ecosystem, while also giving us the robust language features such as coroutines for efficient parallel fetches, and an expressive type system with null safety.

The schema registry is developed in-house, also in Kotlin. For storing schema changes, we use an internal library that implements the event sourcing pattern on top of the Cassandra database. Using event sourcing allows us to implement new developer experience features such as the Schema History view. The schema registry also integrates with our CI/CD systems like Spinnaker to automatically setup cloud networking for DGSs.

In the previous architecture, only the monolith Studio API team needed to learn GraphQL. In Studio Edge, every DGS team needs to build expertise in GraphQL. GraphQL has its own learning curve and can get especially tricky for complex cases like batching & lookahead. Also, as discussed in the previous post, understanding GraphQL Federation and implementing entity resolvers is not trivial either.

We partnered with Netflix’s Developer Experience (DevEx) team to build out documentation, training materials, and tutorials for developers. For general GraphQL questions, we lean on the open source community plus cultivate an internal GraphQL community to discuss hot topics like pagination, error handling, nullability, and naming conventions.

To make it easy for backend engineers to build a GraphQL DGS, the DevEx team built a “DGS Framework” on top of GraphQL Java and Spring Boot. The framework takes care of all the cross-cutting concerns of running a GraphQL service in production while also making it easier for developers to write GraphQL resolvers. In addition, DevEx built robust tooling for pushing schemas to the Schema Registry and a Self Service UI for browsing the various DGS’s schemas. Check out their conference talk and expect a future blog post from our colleagues. The DGS framework is planned to be open-sourced in early 2021.

Netflix’s studio data is extremely rich and complex. Early on, we anticipated that active schema management would be crucial for schema evolution and overall health. We had a Studio Data Architect already in the org who was focused on data modeling and alignment across Studio. We engaged with them to determine graph schema best practices to best suit the needs of Studio Engineering.

Our goal was to design a GraphQL schema that was reflective of the domain itself, not the database model. UI developers should not have to build Backends For Frontends (BFF) to massage the data for their needs, rather, they should help shape the schema so that it satisfies their needs. Embracing a collaborative schema design approach was essential to achieving this goal.

Schema Design Workflow

The collaborative design process involves feedback and reviews across team boundaries. To streamline schema design and review, we formed a schema working group and a managed technical program for on-boarding to the federated architecture. While reviews add overhead to the product development process, we believe that prioritizing the quality of the graph model will reduce the amount of future changes and reworking needed. The level of review varies based on the entities affected; for the core federated types, more rigor is required (though tooling helps streamline that flow).

We have a deprecation workflow in place for evolving the schema. We’ve leveraged GraphQL’s deprecation feature and also track usage stats for every field in the schema. Once the stats show that a deprecated field is no longer used, we can make a backward incompatible change to remove the field from the schema.

Clients with Deprecated Field Usage

We embraced a schema-first approach instead of generating our schema from existing models such as the Protobuf objects in our gRPC APIs. While Protobufs and gRPC are excellent solutions for building service APIs, we prefer decoupling our GraphQL schema from those layers to enable cleaner graph design and independent evolvability. In some scenarios, we implement generic mapping code from GraphQL resolvers to gRPC calls, but the extra boilerplate is worth the long-term flexibility of the GraphQL API.

Underlying our approach is a foundation of “context over control”, which is a key tenet of Netflix’s culture. Instead of trying to hold tight control of the entire graph, we give guidance and context to product teams so that they can apply their domain knowledge to make a flexible API for their domain. As this architecture matures, we will continue to monitor schema health and develop new tooling, processes, and best practices where needed.

In our previous architecture, observability was achieved through manual analysis and routing via the API team, which scaled poorly. For our federated architecture, we prioritized solving observability needs in a more scalable manner. We prioritized three areas:

  • Alerting — report when something goes awry
  • Discovery — easily determine what isn’t working
  • Diagnosis — debug why something isn’t working

Our guiding metrics in this space are mean time to resolution (MTTR) and service level objectives and indicators (SLO/SLI).

We teamed up with experts from Netflix’s Telemetry team. We integrated the Gateway and DGS architectural components with Zipkin, the internal distributed tracing tool Edgar, and application monitoring tool TellTale. In GraphQL, almost every response is a 200 with custom errors in the error block. We introspect these custom error codes from the response and emit them to our metrics server, Atlas. These integrations created a great foundation of rich visibility and insights for the consumers and developers of the GraphQL API.

Edgar Trace for a Federated Request Lifecycle



Source link